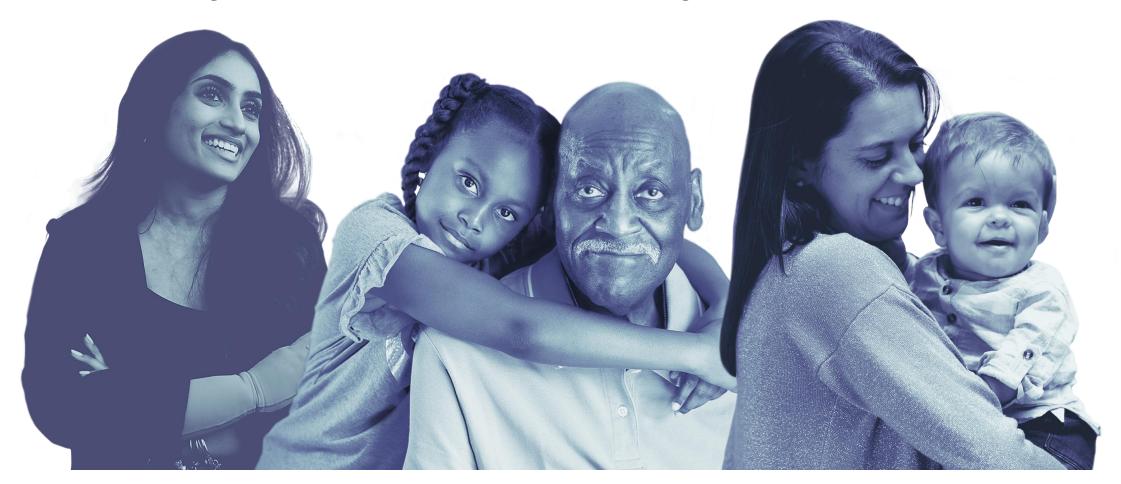


Corporate presentation

May 2021

Forward-Looking Statements and Disclaimer


Statements in this Presentation that are not statements of historical fact are forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Such forward-looking statements include, without limitation, statements regarding BridgeBio Pharma, Inc.'s (the "Company's") research and clinical development plans, expected manufacturing capabilities, commercialization and general strategy, regulatory matters, market size and opportunity, future financial position, future revenue, projected costs, prospects, plans, objectives of management, and the Company's ability to complete certain milestones. Words such as "believe," "anticipate," "plan," "expect," "intend," "will," "may," "goal," "potential," "should," "could," "aim," "estimate," "predict," "continue" and similar expressions or the negative of these terms or other comparable terminology are intended to identify forward-looking statements, though not all forward-looking statements necessarily contain these identifying words. These forward-looking statements are neither forecasts, promises nor guarantees, and are based on the beliefs of the Company's management as well as assumptions made by and information currently available to the Company. Such statements reflect the current views of the Company with respect to future events and are subject to known and unknown risks, including business, regulatory, economic and competitive risks, uncertainties, contingencies and assumptions about the Company, including, without limitation, risks inherent in developing therapeutic products, the success, cost, and timing of the Company's product candidate development activities and ongoing and planned preclinical studies and clinical trials, including for its four (4) core value driver programs, the success and timing of clinical trial results, the success of its clinical trial designs, the fact that successful preliminary clinical trial results may not result in future clinical trial successes and/or product approvals, trends in the industry, the legal and regulatory framework for the industry, the success of the Company's engagement with the U.S. Food and Drug Administration ("FDA") and other regulatory agencies, the Company's ability to obtain and maintain regulatory approval for its product candidates and FDA-approved products, including NULIBRYTM (fosdenopterin), the Company's ability to receive approval for and commercialize its product candidates and FDA-approved products, including NULIBRY, the success of current and future agreements with third parties in connection with the development or commercialization of the Company's product candidates and FDA-approved products, including NULIBRY, the size and growth potential of the market for the Company's product candidates and FDA approved products, including NULIBRY, the accuracy of the Company's estimates regarding expenses, future revenue, future expenditures and needs for and ability to obtain additional financing, the Company's ability to obtain and maintain intellectual property protection for its product candidates and approved products, including NULIBRY, the potential for NULIBRY as the first and only FDA-approved therapy for MoCD Type A, the efficacy of NULIBRY for the treatment of patients with MoCD Type A, the safety profile of NULIBRY for the treatment of patients with MoCD Type A, plans for the supply, manufacturing and distribution of NULIBRY, the competitive environment and clinical and therapeutic potential of NULIBRY, potential adverse impacts due to the ongoing global COVID-19 pandemic such as delays in clinical trials, preclinical work, overall operations, regulatory review, manufacturing and supply chain interruptions, adverse effects on healthcare systems and disruption of the global economy, and those risks and uncertainties described under the heading "Risk Factors" in the Company's most recent Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission ("SEC") and in subsequent filings made by the Company with the SEC, which are available on the SEC's website at www.sec.gov. In light of these risks and uncertainties, many of which are beyond the Company's control, the events or circumstances referred to in the forward-looking statements, express or implied, may not occur. The actual results may vary from the anticipated results and the variations may be material. You are cautioned not to place undue reliance on these forward-looking statements, which speak to the Company's current beliefs and expectations only as of the date this Presentation is given. Except as required by law, the Company disclaims any intention or responsibility for updating or revising any forward-looking statements contained in this Presentation in the event of new information, future developments or otherwise. No representation is made as to the safety or effectiveness of the product candidates for the therapeutic use for which such product candidates are being studied.

Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this Presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while the Company believes its own internal research is reliable, such research has not been verified by any independent source.

The Company is the owner of various trademarks, trade names and service marks. Certain other trademarks, trade names and service marks appearing in this Presentation are the property of third parties. Solely for convenience, the trademarks and trade names in this Presentation are referred to without the and TM symbols, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

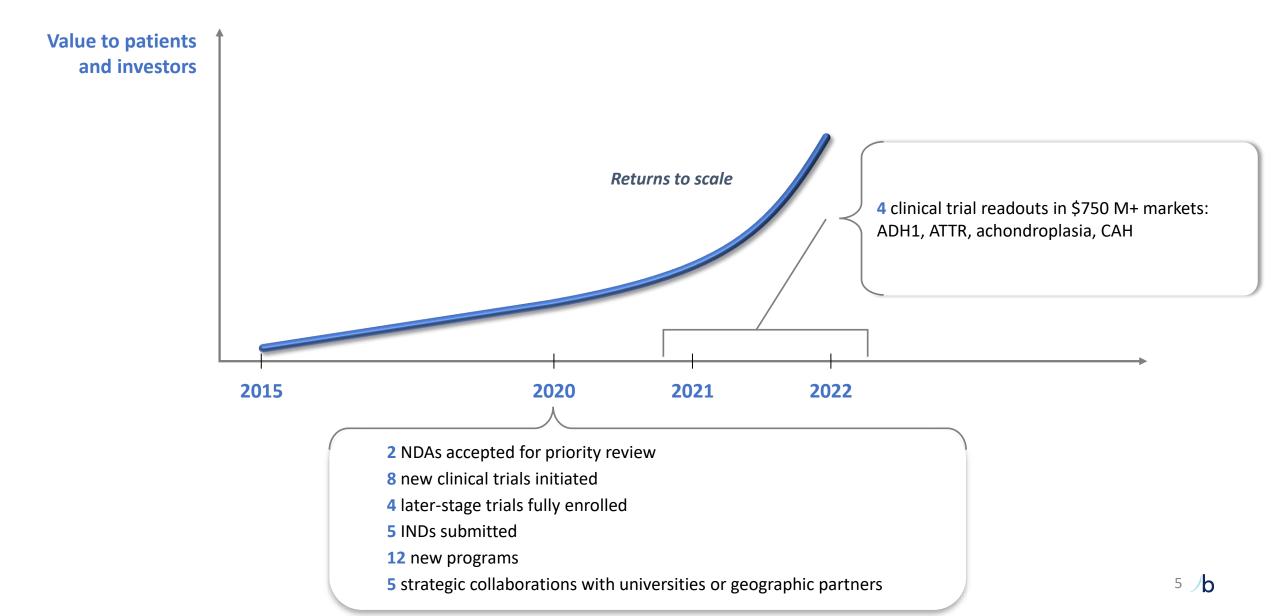
BridgeBio Pharma: Hope through rigorous science

Our mission: To discover, create, test and deliver transformative medicines to treat patients who suffer from genetic diseases and cancers with clear genetic drivers

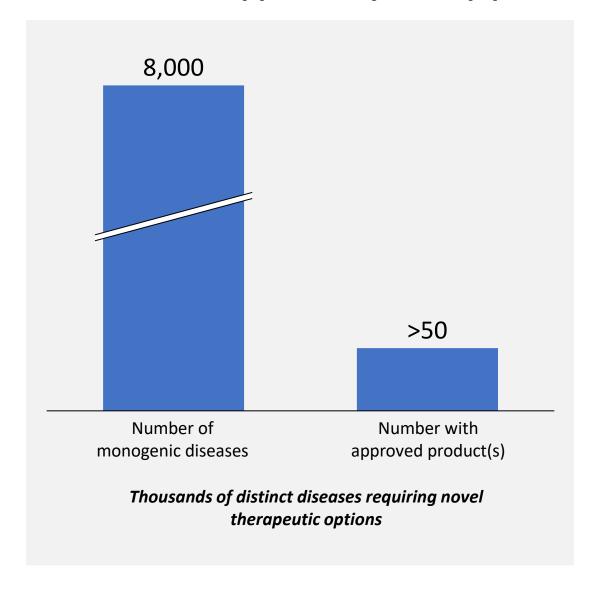
Our 2025 vision – A leading player in genetic medicine

Multiple best-in-class or first-in-class products in blockbuster markets, with a total of 4+ NDAs on file

Patient-centric global commercial infrastructure

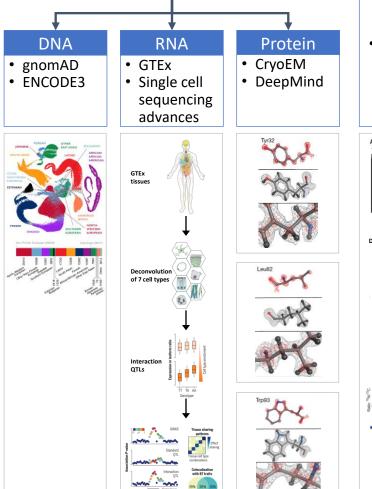

World-class drug discovery and development platform

Broad network of >40 university partnerships


Multiple therapeutic modalities, many diseases

Deep pipeline of 30+ R&D programs

Context #1: 2021 is a critical year for BridgeBio

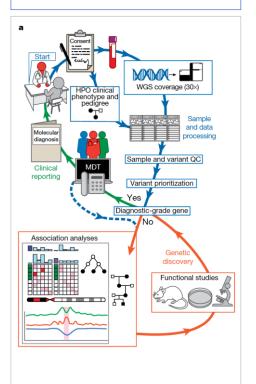

Context #2: The opportunity to help patients remains large

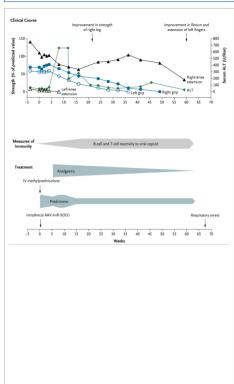
- 1) Acoramidis for ATTR CM and PN
- 2) Low-dose infigratinib for achondroplasia
- 3) AAV5 gene therapy for congenital adrenal hyperplasia
- 4) High-dose infigratinib for adjuvant urothelial carcinoma
- 5) Pan-mutant KRAS inhibitor for KRAS+ cancer
- 6) SHP2 inhibitor for RAS and kinase mutant cancer
- 7) GPX4 inhibitor for multiple tumor types
- 8) GO1 inhibitor for frequent kidney stone formers

Context #3: Still Day 1 for innovation within genetic medicine

Macromolecules

Molecular Systems


 Mass spectrometry + metabolomics give us 1st snap of purine bio-synthesis


Clinical Diagnosis

- Whole genome sequencing of rare disease patients in UK Biobank
- Expanded sequencing led to novel causal variants in 28 genetic disorders

New Therapeutic Modalities

- Antisense oligonucleotides coming of age
- Gene therapy continues maturing

16 FDA approvals for drugs targeting rare genetic diseases or genetically defined cancers in 2020

Product platform: Our drug engineering platform leverages and efficiently translates innovation to therapies that matter

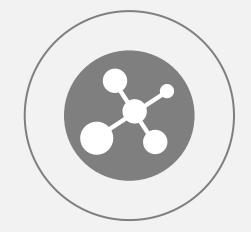
Discover

Novel genetic disease targets

Create

Medicines with industryleading research capabilities

Test


Our drugs through global development footprint

Deliver

Our products to patients through commercial infrastructure

Computational genomics, systemic disease mapping, broad network of academic partnerships

Molecular dynamics assisted chemistry, gene therapy, therapeutic proteins, antisense oligos

19 ongoing trials across >450 sites and 26 countries, central operations toolkit and analytics

Global infrastructure, diagnostics, patient support, disease state awareness

Product platform: BridgeBio is a people and a process

Scientific insight and judgment from industry leaders with a proven track record

Charles Homcy, MD Founder and Chairman of **Pharmaceuticals** MyoKardia GBT

Frank McCormick, PhD Founder and Chairman of Oncology ONYX

Richard Scheller, PhD Chairman of R&D Genentech

Len Post, PhD Advisor **B**OMARIN

Phil Reilly, MD, JD Advisor THIRD ROCK

bluebirdbio*

Experienced team of R&D operators responsible for 100+ INDs and 20+ approved products

Uma Sinha, PhD Chief Scientific Officer

Robert Zamboni, PhD Chemistry

Eli Wallace, PhD Chief Scientific Officer, Oncology

Pedro Beltran, PhD SVP, Oncology UNITY

Susan Moran, MD Chief Medical Officer, **QED Therapeutics** genzyme

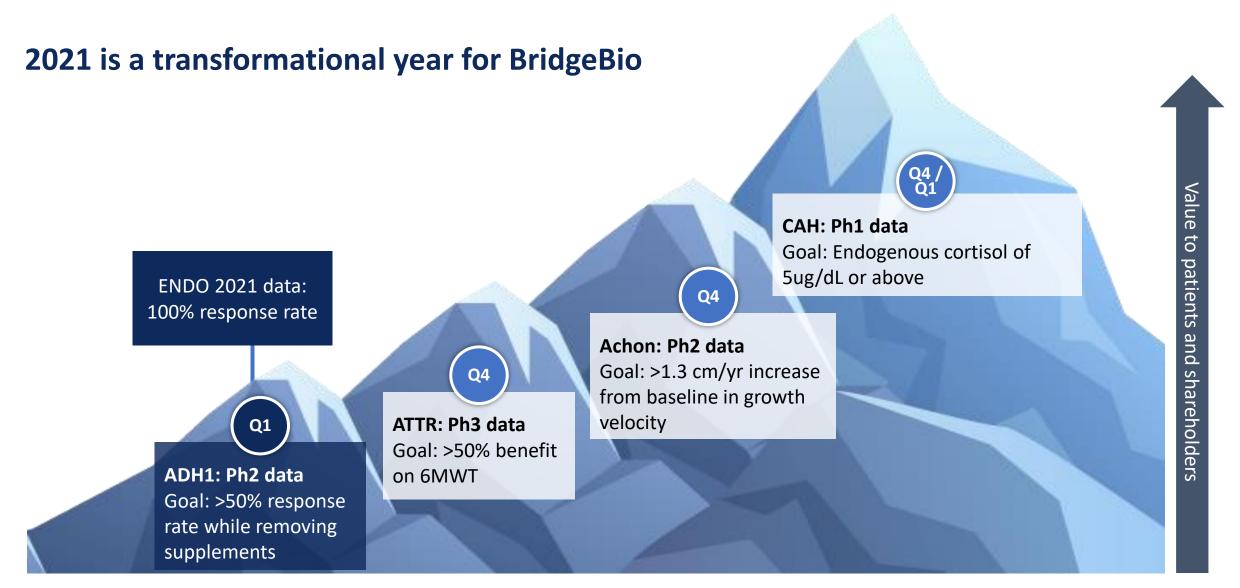
Our pipeline spans multiple therapeutic areas with numerous upside opportunities

Small molecu	ule Topical small molecule	Biologics Antiser	nse oligo Mi Gene therapy							
Portfolio	Program	Drug mechanism	Diseases	Patient pop. (US+EU)	Modality	Preclinical		Clinical		
segment						Discovery	IND-enabling	Phase1	Phase 2	Phase 3
Mendelian	Acoramidis	TTR stabilizer	ATTR-CM	>400K	\$					
	NULIBRY (fosdenopterin)	cPMP replacement	MoCD type A	100	\$				1	Approv
	Infigratinib	Low-dose FGFR1-3i	Achondroplasia	55K	\$					
	Encaleret	CaSR antagonist	ADH1 / HP	$12K^{1} / 200K$	\$					
	BBP-418	Glycosylation substrate	LGMD2i	7K	\$					
	BBP-671	PanK activator	PKAN / OA	7K	\$					1
	BBP-711	GO1 inhibitor	PH1 / FSF	5K / 1.5M	\$				 	
	BBP-472	РΙЗКβі	PTEN autism	120K	\$				 	
	4 undisclosed small molec	ule programs		>500K	\$				1	1
	4 undisclosed antisense o	igonucleotide programs		>300K	LILLILLE					
Genetic Derm	BBP-589	Recombinant COL7	RDEB	1.5K	****					1
	BBP-681	Topical PI3Kai	VM / LM	117K					 	
	BBP-561	Topical KLK 5/7i	Netherton	11K					 	
Targeted	Infigratinib	FGFR1-3i	3 FGFR+ tumor programs	37K	\$!	NDA fi
Oncology	BBP-398	SHP2i	Multiple tumors	>500K	\$					
	BBP-454	Pan-mutant KRASi	3 KRAS+ tumors programs	>500K	\$					
	BBP-954	GPX4i	Multiple tumors	>500K	\$				 	
Gene Therapy	BBP-631	21-OH gene therapy	САН	>75K	DODE				 	
	BBP-812	ASPA gene therapy	Canavan	1K					1	1
	BBP-815	TMC1 gene therapy	Genetic hearing loss	10K					1	
	4 undisclosed AAV gene th	nerapy programs		150K	DODO				i	

Product pipeline: Layers of de-risking and upside

Future pipeline catalysts and long-term growth

Targeted oncology (FGFR3 in UC, SHP2, KRAS)


Common mendelian (LGMD2i, RDEB, PKAN, VM)

Validation of asset picking and execution

Near-term major catalysts from 4 core value drivers (ATTR, ADH1, achondroplasia, CAH)

Proving ground and revenue

2 FDA approvals in 2021 (MoCD Type A, 2L+ CCA)

Growth potential this year:

- Positive pivotal data in a multi-billion market
- Positive POC data in multiple blockbuster indications
- Transition to commercial-stage biopharma company

Alexis and Jackson ADH1 patients

Encaleret for autosomal dominant hypocalcemia type 1 (ADH1) overview

ADH1 overview

Prevalence

12K individuals harboring variants in US1

Genetic driver

Calcium-sensing receptor (CaSR) hyperactivation

Pathophysiology

Decreased blood calcium, elevated urine calcium, and lower parathyroid hormone secretion ²

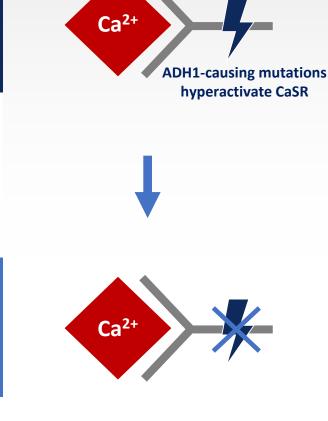
Features of a potential best-in-class medicine for ADH1

Direct targeting of CaSR

Normalization of all downstream effects of CaSR hyperactivity

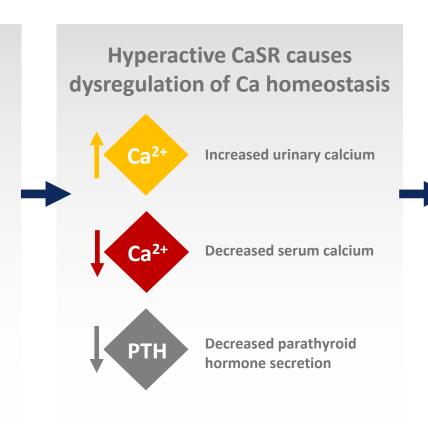
Potential to address most common symptoms

arising from altered calcium and parathyroid hormone dysregulation


Oral dosing, the first targeted therapy for ADH1 in a convenient form for patients and families

Encaleret is designed to treat ADH1 at its source by normalizing CaSR sensitivity

ADH1 disease mechanism


Therapeutic

hypothesis

CaSR senses and regulates

serum Ca levels

Acute symptoms and long-term complications

Presenting symptoms

Hypocalcemic seizures

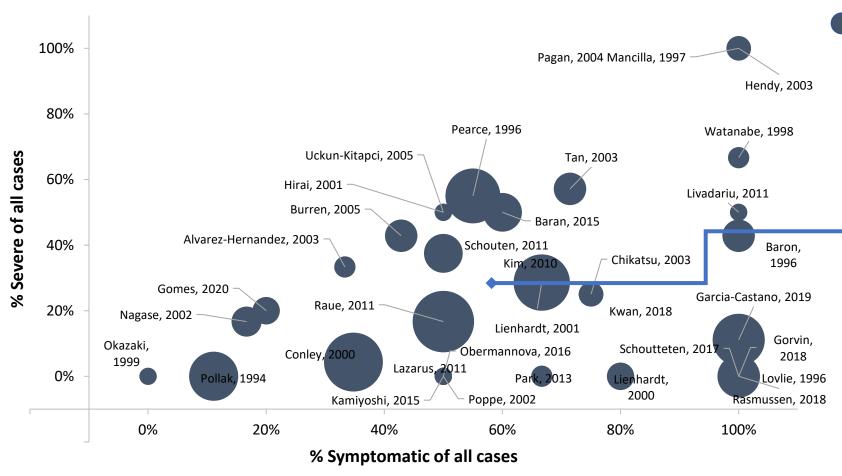
Paresthesia

Tetany

Muscle cramps

Long-term complications

Nephrocalcinosis

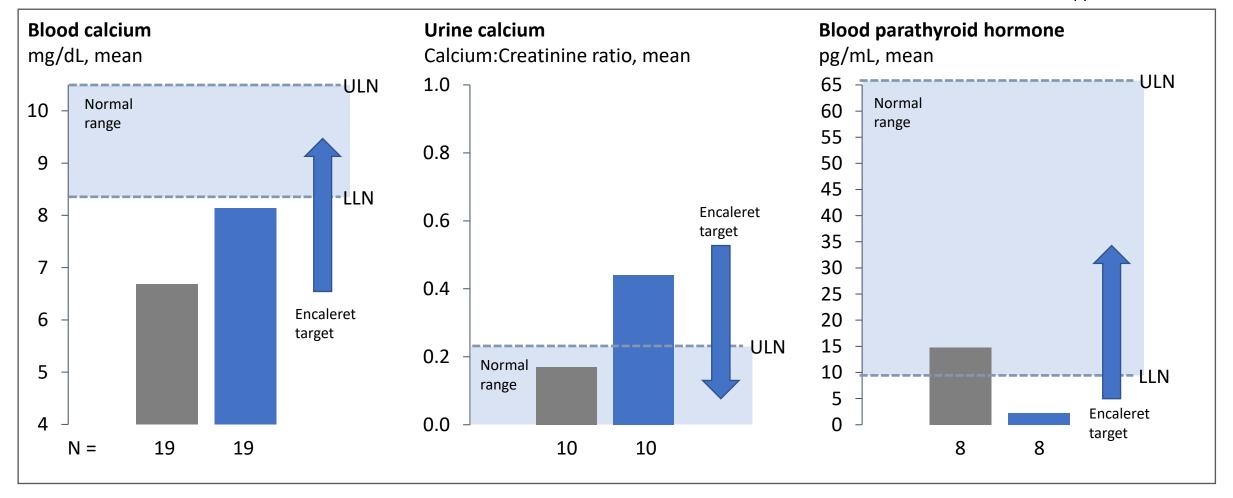

Nephrolithiasis

Chronic kidney disease

Encaleret is a CaSR inhibitor designed to normalize PTH, serum Ca and urine Ca levels, potentially resolving key symptoms of disease

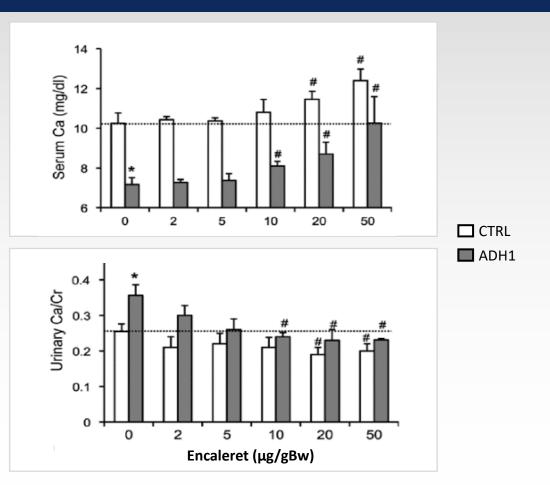
Majority of ADH1 patients are symptomatic including one third with severe symptoms

Meta-analysis of published ADH1 case reports

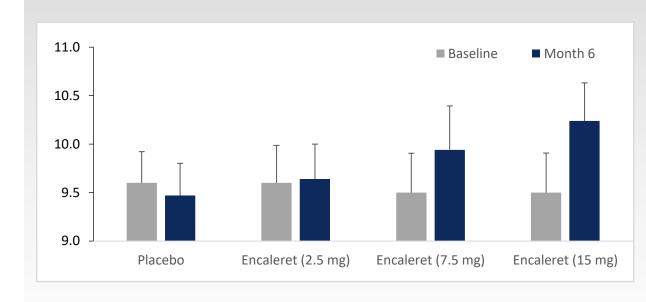

Size proportional to study sample number

In aggregate, ~60% of familial ADH1 cases experienced hypocalcemiarelated symptoms with one third experiencing severe symptoms

Current therapy for ADH1 (oral calcium, activated Vitamin D) raises blood Ca but does not address disease mechanism; increases UCa, suppresses PTH

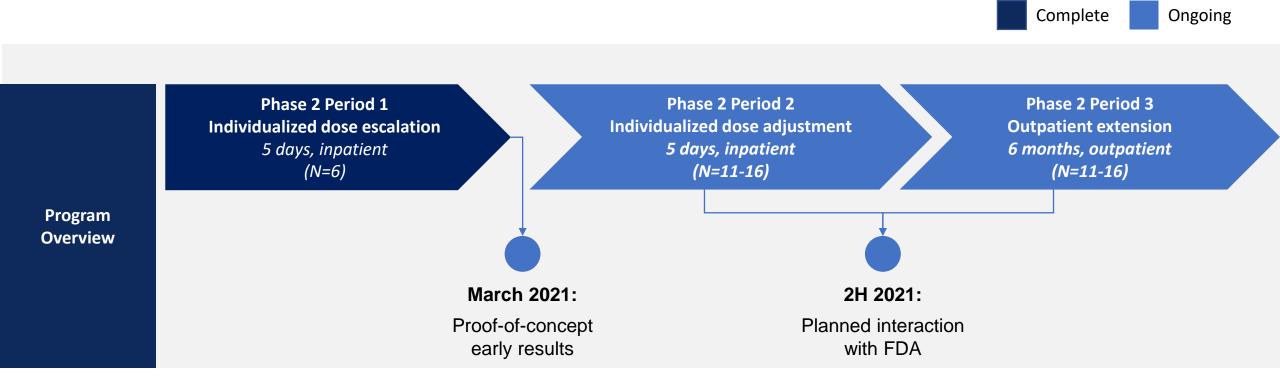

Summary of key disease measures in ADH1 patients with and without supplementation

■ Without supplementation With supplementation



Encaleret proof of mechanism in a mouse model of ADH1 and in humans with wildtype CaSR

Encaleret normalized serum and urine calcium in a mouse model of ADH1¹



Encaleret was well-tolerated and increased serum calcium in clinical trials in patients with osteoporosis^{2, 3}

- In prior osteoporosis development program (>1,200 participants), dosedependent increases in mean serum calcium were observed
- Encaleret was well-tolerated; hypercalcemia events were more frequent among participants receiving higher doses
- Increasing serum calcium levels is target effect in ADH1

Encaleret Phase 2 study design

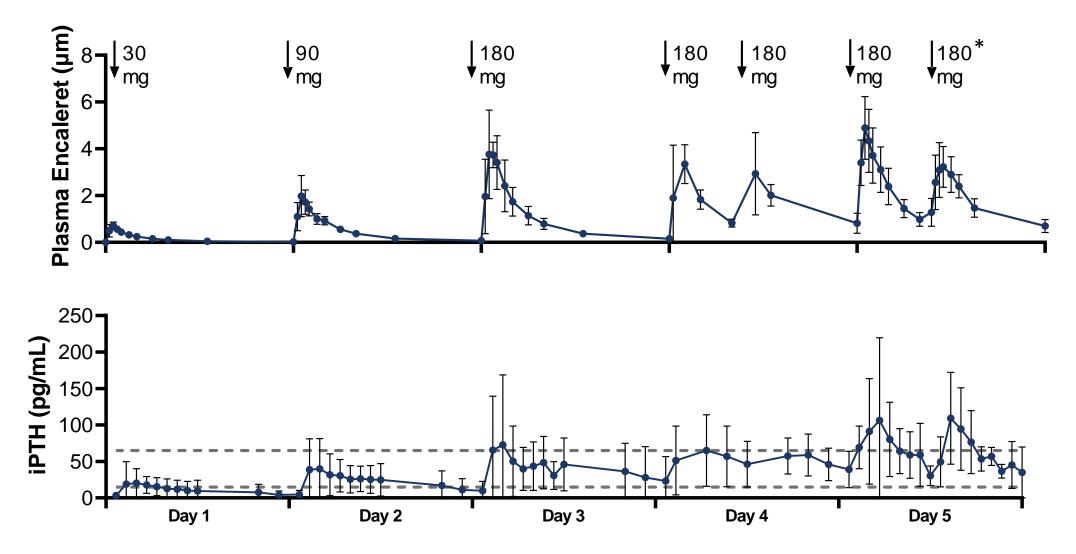
Key study objectives:

- Safety and tolerability
- Blood calcium concentration
- Urine calcium concentration
- Intact parathyroid hormone concentration

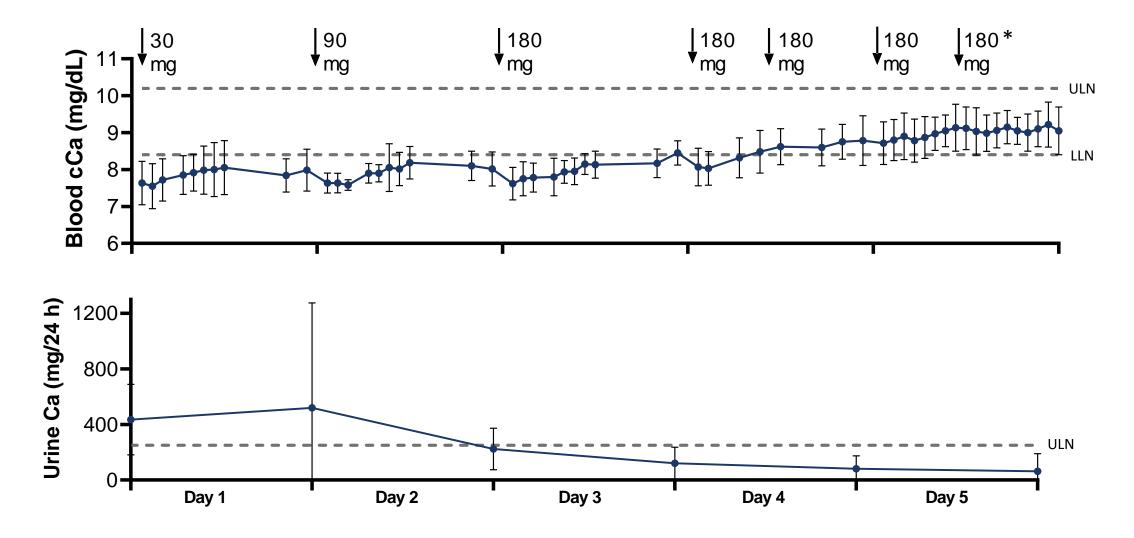
Additional measures

- Blood 1,25-(OH)₂ Vitamin D, magnesium, and phosphate
- Urine creatinine, cAMP, citrate, phosphate, sodium, magnesium
- Bone turnover markers (serum collagen C-telopeptide, serum procollagen Type 1 N-propeptide)

Encaleret Ph baseline characteristics

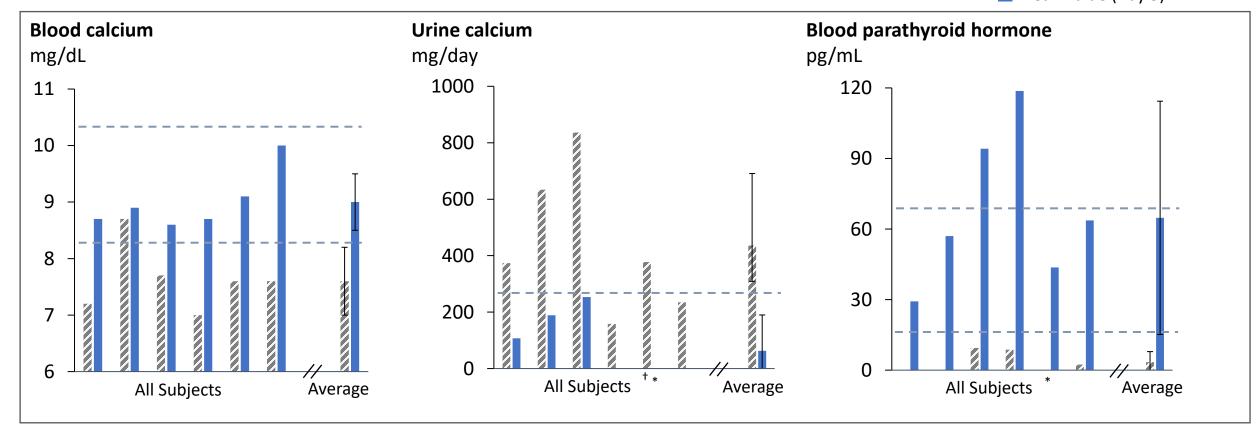

Characteristic	Encaleret N = 6	Normal Range		
Age, mean (range)	40 (22-60)			
Female, n (%)	3 (50%)			
Nephrocalcinosis, n (%)	4 (67%)			
ECG QT _c B (msec)	452 ± 9	< 440		
Corrected Calcium (mg/dL)*	7.6 ± 0.6	8.4 – 10.2		
Intact PTH (pg/mL)*	3.4 ± 4.5	15 – 65		
Phosphate (mg/dL)*	4.5 ± 0.7	2.5 – 4.5		
Magnesium (mg/dL)*	1.6 ± 0.4	1.6 – 2.6		
24h Urine Calcium (mg/24h)	436 ± 255	< 250-300		
Supplements				
Elemental Calcium (mg/day) [mean (range)]	2317 (800-4000)			
Calcitriol (µg/day) [mean (range)]	0.9 (0.5-2.0)			
CASR Variants	C131Y (2), P221L (2), E	C131Y (2), P221L (2), E604K (1), A840V (1)		

Encaleret was generally well-tolerated with no serious adverse events reported after 5 days


	N = 6
Number of subjects experiencing any Serious Adverse Event	0 (0%)
Number of subjects experiencing any Adverse Event	5 (83%)
Mild	5 (83%)
Moderate	0 (0%)
Severe	0 (0%)
Number of Adverse Events Reported	9
Mild	9 (100%)
Moderate	0 (0%)
Severe	0 (0%)

Only treatment-related AE was mild, transient, asymptomatic hypophosphatemia (<2 mg/dL) in 2 subjects

Dose dependent-increases in PTH mirrored encaleret levels



Encaleret normalized blood and urine calcium

All trial participants had normal blood and urine calcium by Day 5

Baseline Value (Day 1)Mean Value (Day 5)

^{*}Values below limit of assay quantitation recorded as "0". † Day 4 values used in two subjects given Day 5 values unavailable. Dashed lines reflect normal ranges.

Conclusions

- Encaleret was well-tolerated when administered in escalating oral doses once or twice daily over 5 days, with no serious adverse events reported and no adverse events of moderate or severe intensity
- Blood calcium, PTH, and phosphate were normalized and maintained within the normal range on average by day 5
- Urinary calcium excretion was reduced to below the upper limit of normal or undetectable in all participants while on encaleret and eucalcemic
- Consistent changes from baseline in blood and urine mineral measurements provide proof-of-concept data that encaleret may be an effective treatment for ADH1
- Data support further development of encaleret in ADH1

Next steps for encaleret include generating further evidence in ongoing Phase 2 study

2020

- ✓ Initiate Phase 2 study in ADH1
- ✓ Receive ODD from FDA for ADH

2021

- ✓ Report Phase 2 proof-of-concept results
- Complete enrollment of Cohort 2 in Phase 2 study
- ☐ Interaction with FDA

Planned activities

- Phase 3 registrational study in ADH1
- Pediatric development program in ADH1
- Evaluation of encaleret in non-genetic hypoparathyroidism

Art **ATTR-CM** patient

Acoramidis (AG10) for transthyretin (TTR) amyloidosis (ATTR)

ATTR overview

Prevalence

400,000+ worldwide, largely undiagnosed today

Genetic driver

Destabilizing TTR variants or factors of aging, leading to amyloid accumulation

Pathophysiology

Systemic disease most commonly presenting as cardiomyopathy or peripheral neuropathy

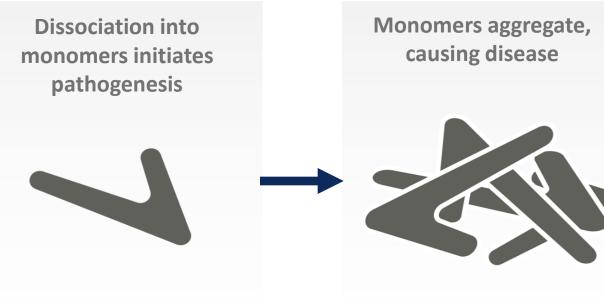
Features of a potential best-in-class medicine for ATTR

Near-complete stabilization of TTR, preventing the formation of amyloid deposits

Preserve TTR tetramer, which has known beneficial

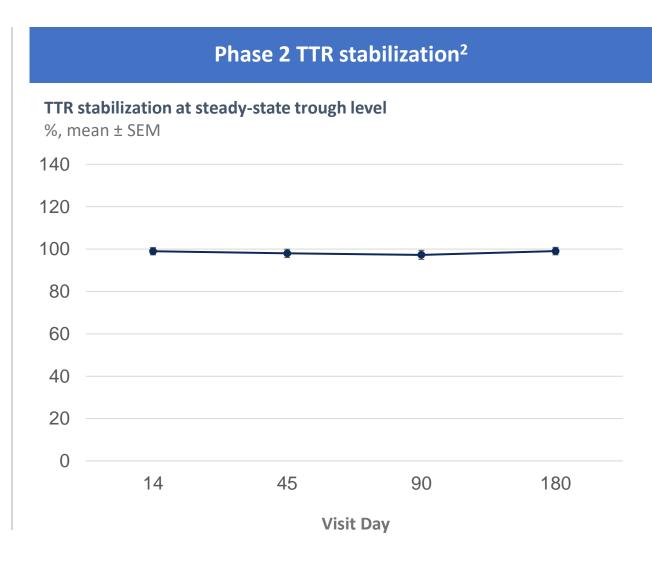
roles and is highly evolutionarily conserved

Oral dosing, a convenient and flexible solution for ATTR patients and their families


Acoramidis was designed to treat ATTR at its source

Disease mechanism

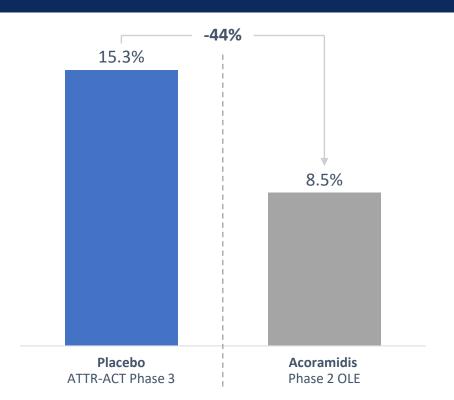
Therapeutic hypothesis


~130 known destabilizing mutations **Protective** T119M mutation

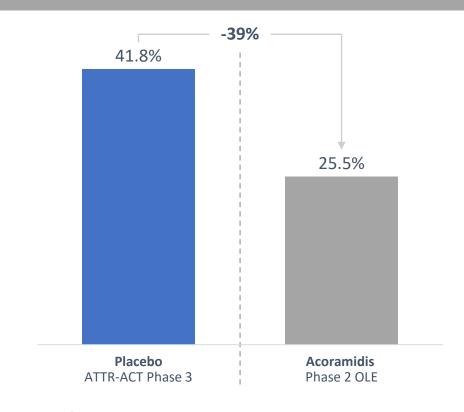
Acoramidis was designed to mimic protective T119M mutation by stabilizing TTR tetramers to slow or halt disease progression

Acoramidis has been well-tolerated and demonstrated near-complete TTR stabilization in pre-clinical, Ph1, and Ph2 studies

Phase 2 safety summary ¹					
	Placebo N = 17	Acoramidis (pooled doses) N = 32			
Any Adverse Event	15 (88%)	21 (66%)			
Mild	6 (35%)	11 (34%)			
Moderate	8 (47%)	9 (28%)			
Severe	1 (6%)	1 (3%)			
Any Serious Adverse Event	2 (12%)	1 (3%)			
AF and CHF	1 (6%) ¹	0			
Leg cellulitis	1 (6%)	0			
Dyspnea	0	1 (3%)			

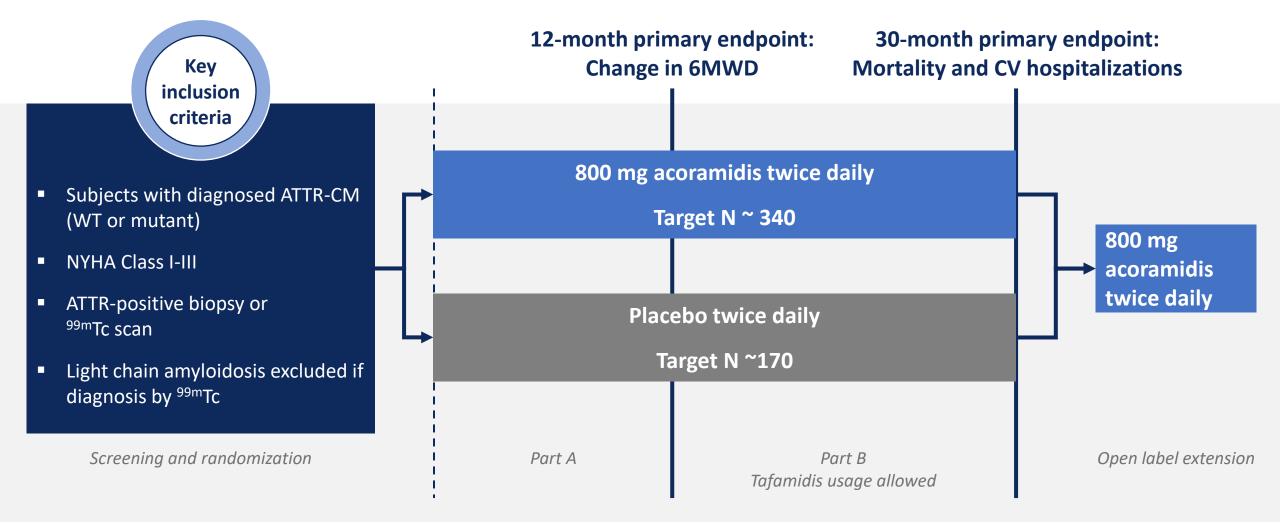


¹ Judge, D.P. et al. JACC Vol. 74, No. 3, 2019:285 – 95

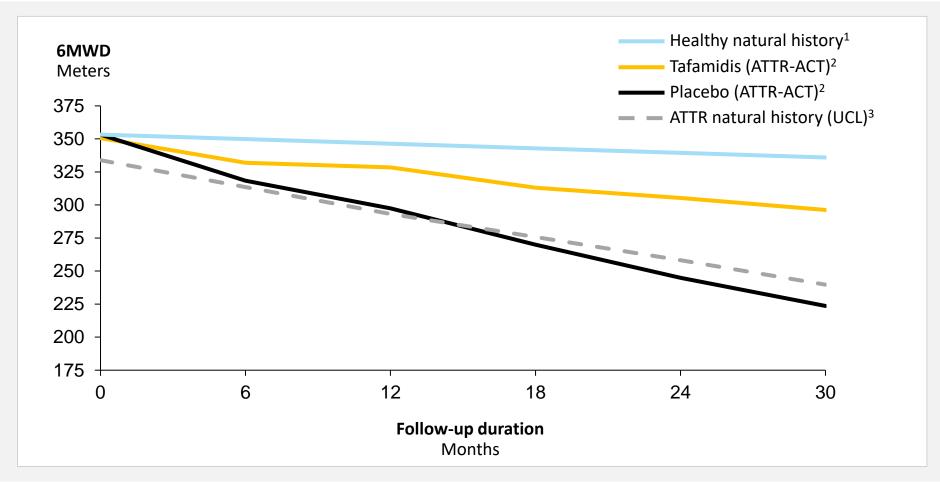

² Judge, D.P. et al. American Heart Association 2019

Deaths and CV hospitalizations reported in acoramidis Phase 2 OLE were lower than in placebo-treated ATTR-ACT participants

All-cause mortality at 15 months Participants died or receiving transplant (%)


Cardiovascular hospitalizations at 15 months Participants with ≥1 CV hospitalization (%)

1 Based on routine adverse event reporting


Note: These data are based on a cross-trial comparison and not a randomized clinical trial. As a result, the values shown may not be directly comparable Source: Judge, DP et al. American Heart Association Scientific Sessions 2019

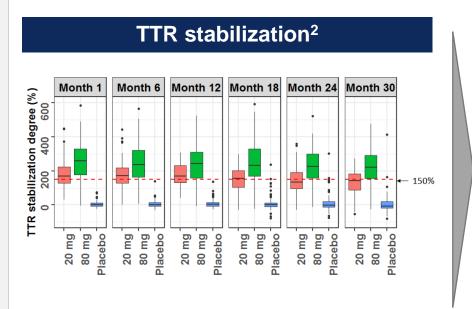
ATTRibute-CM will provide 12-month functional outcome data and 30-month mortality and CV hospitalization data

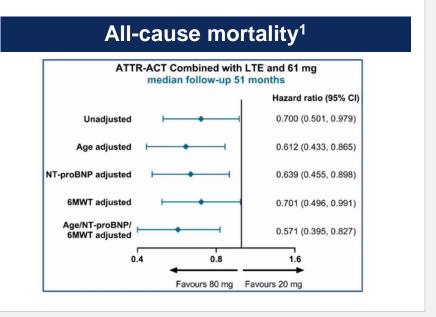
Rapid functional decline in untreated ATTR-CM patients provides opportunity to demonstrate robust clinical benefit

Summary of 6MWD data in ATTR-CM and healthy cohorts

Optimal profile for acoramidis would markedly slow or halt decline in 6MWD in trial participants

^{1.} Enright, P.L. et al. Chest 2003. N = 3333 healthy elderly adults, baseline set to match ATTR-ACT placebo group


^{2.} Maurer, M.S. et al. NEJM 2018. N = 264 (tafamidis), N = 177 (placebo) ATTR-CM trial participants


^{3.} Lane, T.L. et al. Circulation 2019. N = 1034 ATTR-CM patients

Higher dose of tafamidis demonstrated increased TTR stabilization and greater clinical benefit in ATTR-ACT + LTE

Phase 3 ATTR-ACT study tested two doses of tafamidis (20 mg & 80 mg) vs. placebo

- In an analysis of ATTR-ACT combined with long-term extension (LTE), benefit of tafamidis 80 mg vs. 20 mg was evident on all-cause mortality¹
- At baseline, ATTR-ACT participants treated with 80 mg of tafamidis were older and had more severe evidence of disease than those treated with 20 mg of tafamidis¹
- Participants receiving 80 mg of tafamidis (vs. 20 mg) exhibited greater TTR stabilization²

Increased levels of TTR stabilization may translate to improved clinical outcomes in ATTR-CM

- 1. Damy, T., ESC Heart Failure Association Discoveries 2020. "The Tafamidis in Transthyretin Cardiomyopathy Clinical Trial."
- 2. FDA CDER Clinical Pharmacology and Biopharmaceutics, Clinical Review (Vyndagel/Vyndamax), 2019; Fourfold increase in tafamidis dose did not lead to a fourfold increase in TTR stabilization due to non-linear pharmacokinetics

Ongoing and planned studies of acoramidis aim to continually expand clinical evidence and addressable patient population

ATTRibute-CM Phase 3 study enrolled 632 participants and is on track for topline data in late 2021 or early 2022

2024

Prevention in high risk populations

Head-to-head comparisons

2023

ATTRibute **₹**

ATTR-PN Hereditary

Functional outcomes

ATTRibute

ATTR-PN Hereditary

Functional outcomes

2021

ATTRibute

ATTR-CM WT and hereditary

Functional outcomes

Composite mortality and morbidity

ATTRibute

ATTR-CM WT and hereditary

Functional outcomes

Composite mortality and morbidity

ATTRibute 5

ATTR-CM
WT and hereditary

Functional outcomes

Composite mortality and morbidity

ATTRibute

ATTR-CM
WT and hereditary
Functional outcomes

Claudia, child with achondroplasia

Low-dose FGFR inhibitor (infigratinib) for achondroplasia

Achondroplasia overview

Prevalence

55,000 (US+EU) one of the most common genetic conditions

Genetic driver

FGFR3 activation

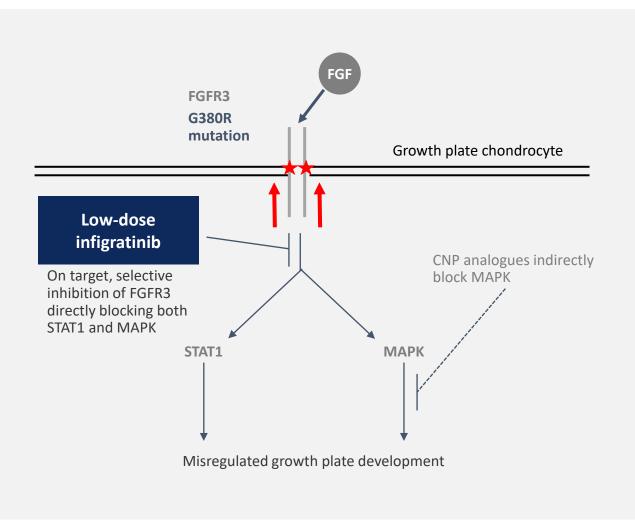
Pathophysiology

Up-regulation of STAT1 and MAPK in the growth plate cause cranial, spinal, and stature symptoms

Features of a potential best-in-class medicine for achondroplasia

Direct targeting of FGFR3

and normalization of both STAT1 and MAPK signaling pathways


Potential to address all drivers of symptoms,

including cranial, spinal and stature issues

Oral dosing, the most convenient solution for children with achondroplasia and their families

Potential best-in-class approach targeting achondroplasia directly at its genetic source

ACH FGFR3 gain-of-function mutation causes:

- 2-3x over-activation of the receptor
- Up-regulation of downstream pathways STAT1 and MAPK
- Aberrant growth plate development, which causes cranial, spinal, and stature symptoms

Low-dose infigratinib has the potential to:

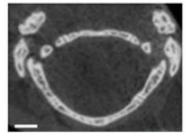
- Directly inhibit the causal gain-of-function mutation in FGFR3
- Normalize both the STAT1 and MAPK signaling pathways
- Reverse all key drivers of symptoms

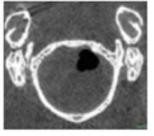
Low-dose infigration improves all the key drivers of clinical symptomology in validated ACH mouse model

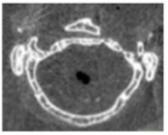
FGFR3 WT No treatment

FGFR3Y367C/+ No treatment

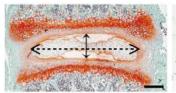
FGFR3^{Y367C/+} Infigratinib tx

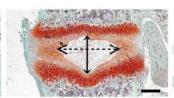

Cranial bone issues

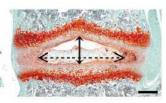

17% increase in FM area


6% increase in AP skull length

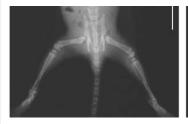
May lead to decrease in foramen magnum stenosis and fewer surgeries

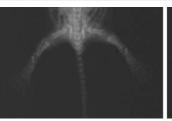



Disorders of the spine


12% increase in L4-L6 length **73%** increase in disc width

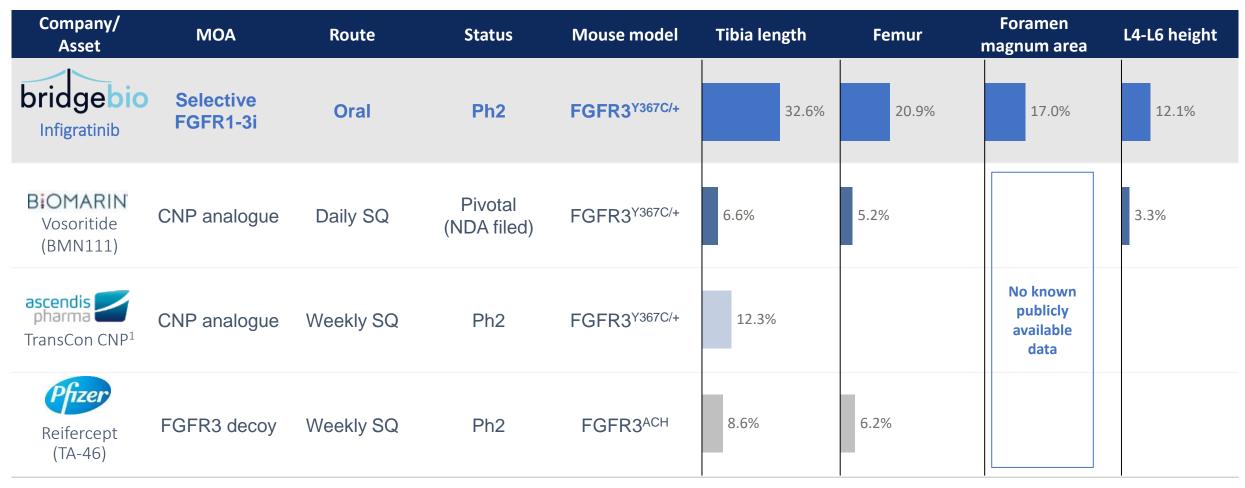
May lead to decrease in spinal stenosis, possibly reducing need for surgery




Disproportionate short stature

21% increase in femur length 33% increase in tibia length

May lead to increased stature and proportionality



Source: Komla-Ebri et al. J Clin Inv 2016

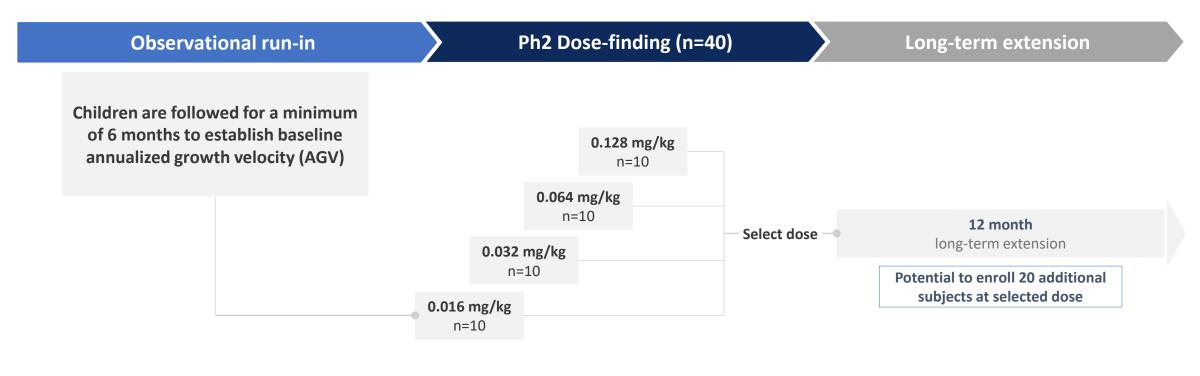
Note: percent increase compared to vehicle treated FGFR3Y367C/+ mouse, infigratinib treatment with 2mg/kg subcutaneous dose

Low-dose infigration showed potential best in-class preclinical profile in validated achondroplasia mouse model

Preclinical data from infigratinib and other investigational achondroplasia therapies

Percent increase compared to non-treated mouse

We have a wide anticipated therapeutic index in achondroplasia


Infigratinib has been tested in >700 humans in our oncology program, providing significant data on PK, tolerability and safety

Most common and dose-limiting side effect is phosphorus elevation (on-target through FGFR1 inhibition), which occurs significantly above our planned achondroplasia doses

¹Based on 125mg dose and 60kg adult; ²Based on estimated TD₅₀ at 40mg and 60kg adult; ³Based on PK modeling and allometric scaling from animal models

The PROPEL clinical program is enrolling with data expected in 2H 2021

Key inclusion criteria

- Children 2.5 10 years old
- Clinical and molecular ACH diagnosis

Primary objectives

Baseline annualized growth velocity (AGV)

Primary objectives

- Identify safe therapeutic dose for expansion / pivotal study
- Safety and tolerability
- Change from baseline in AGV

Primary objectives

Long-term safety and efficacy

BBP-631: AAV5 gene therapy for congenital adrenal hyperplasia (CAH)

Program overview

Prevalence

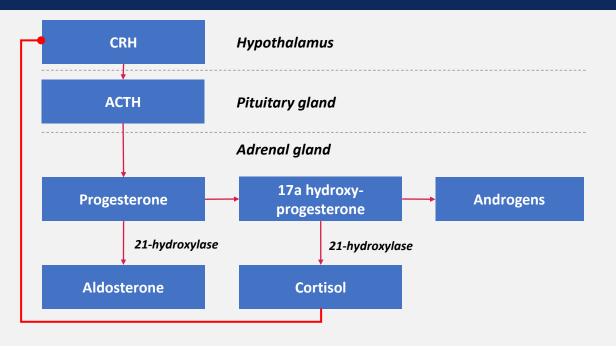
75,000 (US+EU) - One of the largest known AAV gene therapy markets

Genetic driver

21-hydroxylase inactivation

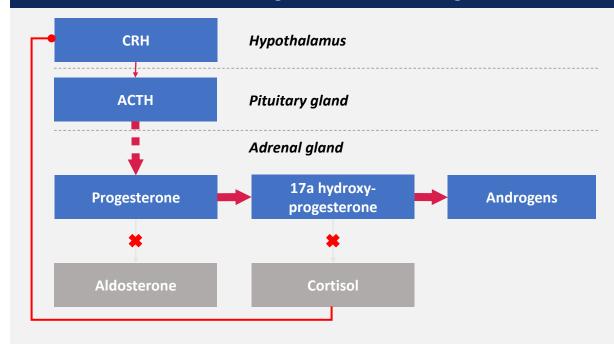
Pathophysiology

Inability to produce cortisol causes need for supraphysiologic doses of synthetic steroids, 3x increase in mortality risk, hirsutism, Cushingoid symptoms


We believe CAH is an ideal indication for AAV gene therapy:

- Low threshold to correct phenotype, validated by human clinical genetics (~5-10% of WT enzyme activity)
- Only approach designed to induce endogenous cortisol and mineralocorticoid production, potentially allowing steroid withdrawal
- Durable transgene delivery to the adrenal gland of NHPs with IV dosing of our construct
- Next catalyst: initial data from first-in-human study

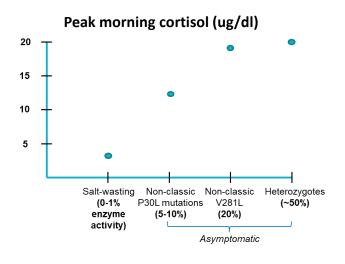
Maris, child with CAH


Gene therapy is the only modality designed to treat CAH at its source and allow for production of endogenous cortisol

Healthy Hypothalamic-Pituitary-Adrenal Axis

In a functional HPA system, cortisol and aldosterone are produced as needed by the body. Cortisol serves as a "brake" on the CRF/ACTH system

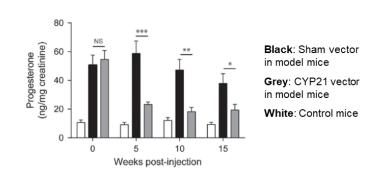
Hormonal dysregulation with 210HD; no cortisol "brake" on ACTH, shunting of 170HP to androgens



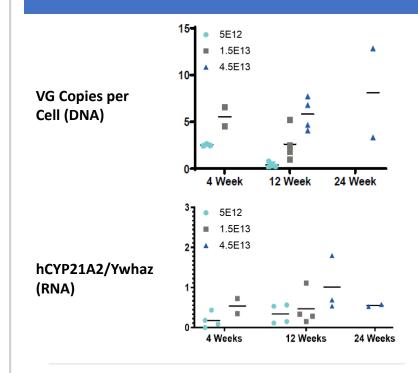
In CAH, cortisol and aldosterone are not able to be produced. The lack of a "cortisol brake" results in buildup of progesterone and 17OHP, leading to an excess of androgen production

CAH patients have 3-4X higher mortality than the general population, and suffer significant morbidity ranging across cardiovascular and metabolic disease, bone disease, infertility, chronic fatigue, and other disorders.

CAH: NHP study showed durable transgene expression; 5-10% of WT enzyme may be sufficient for clinical impact


Genotype-phenotype studies show that >5-10% of enzyme activity results in nonclassical CAH

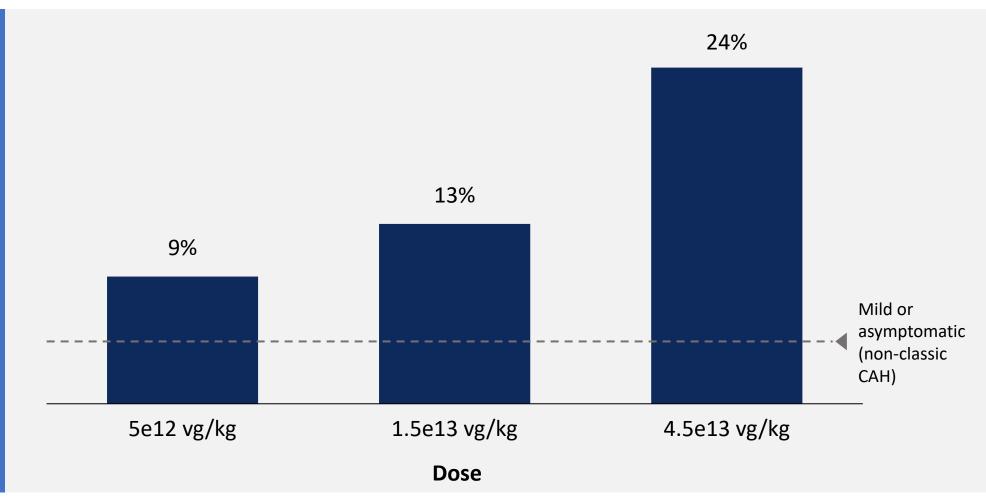
Due to the high enzymatic efficiency/selectivity of 21-OHase, only a small amount of enzyme is required to rescue the phenotype


Mouse studies show a VGC of only 0.13 at 18 wks was sufficient for phenotypic correction

Progesterone levels in Cyp 21-/-mice

At 15 weeks in treated mice, progesterone (the key substrate of 210Hase in mice) was significantly reduced vs untreated mice

NHP studies show sustained VGC and RNA out to 6 months



- Transgene expression is dose-dependent and stable out at 24 wks
- We can durably transduce the NHP adrenal gland with our construct at >20x the vector required to correct the **CAH** phenotype in mice

NHP protein data using mass spec methods suggests potentially therapeutic levels of 21-hydroxylase enzyme

Human 21-hydroxylase protein as a % of NHP 21-hydroxylase protein (Mass Spec quantification)

- We have developed massspec methods to quantify protein expression by identifying differential peptides between human and NHP 21-OH
- These data suggest dosedependent enzyme expression in the adrenal cortex from 9%-24% of WT levels
- Genotype-phenotype
 relationship suggests as little
 as 5% of WT enzyme activity
 is associated with the
 mild/asymptomatic non classic form of CAH

Source: Data on file

Basia, pancreatic cancer patient (>90% KRAS-driven)

BridgeBio oncology research

World-class oncology team drives our discovery and development

Eli Wallace

CSO Oncology Research

Pedro Beltran

SVP Oncology

Frank McCormick

Chairman of Oncology

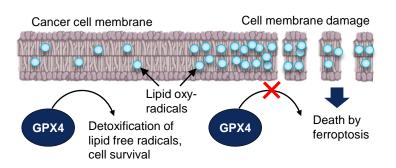
Richard Scheller

Chairman of R&D

Three disclosed oncology research targets

SHP2 (BBP-398) Receptor tyrosine kinase signals (EGFR, ALK, TRK, RET) **Cancer mutations lock** KRAS in its active state KRAS GTP RAS(ON) **KRAS GDP** RAS(OFF) **RAS effectors** Tumor cell PI3K RAF proliferation

Potential best in class oral compound


and survival

- Optimized safety, PK and PD profile
- Maximizes combination therapy potential
- First-in-human study initiated 4Q20

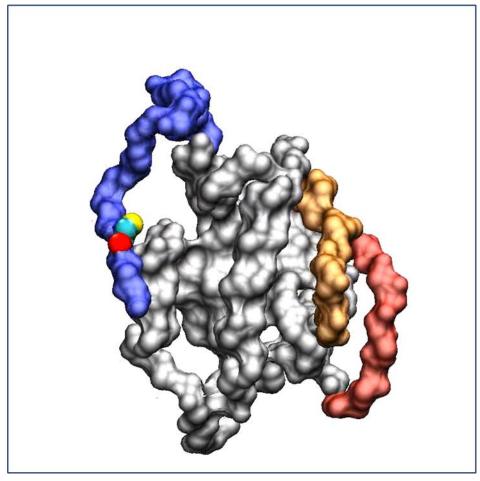
KRAS Receptor tyrosine kinase signals (EGFR, ALK, TRK, RET) **Cancer mutations lock** KRAS in its active state Prenylation **KRAS GTP** RAS(ON) **KRAS** GDP RAS(OFF) **RAS** effectors Tumor cell RAF PI3K proliferation and survival

- Multiple unexploited sites
- Comprehensive pan-mutant targeting approaches

GPX4

- Potential first in class compound for novel cancer target
- In vivo monotherapy activity and combo potential

Partnerships afford us exceptional collaborators and resources

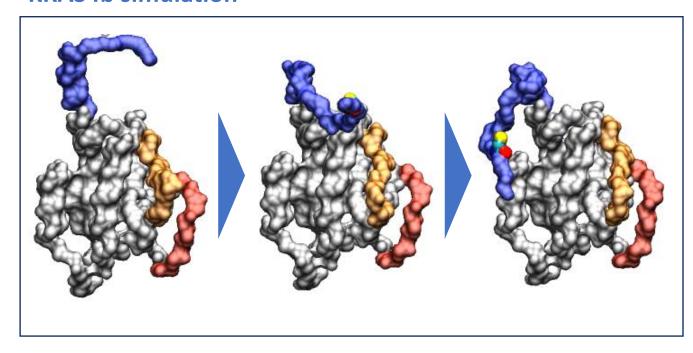

- Partnership with the National RAS Initiative, including 60 of the world's foremost academic RAS researchers
- Cutting edge RAS structural biology expertise
- Utilization of cutting-edge instrumentation and techniques, as well as the expertise to lead experiments

- Home to Sierra: the world's 3rd fastest computing system
- **Enables multi-microsecond molecular dynamics** simulations of protein complexes, and highly efficient in silico docking simulations
- This computing power, combined with RAS structural biology expertise at the NCI, delivers unique insights that fuel our drug design

Crystal structure enables a static understanding of the target ...

KRAS4b model based on crystal

G-domain Switch I


G-domain switch II Hypervariable region

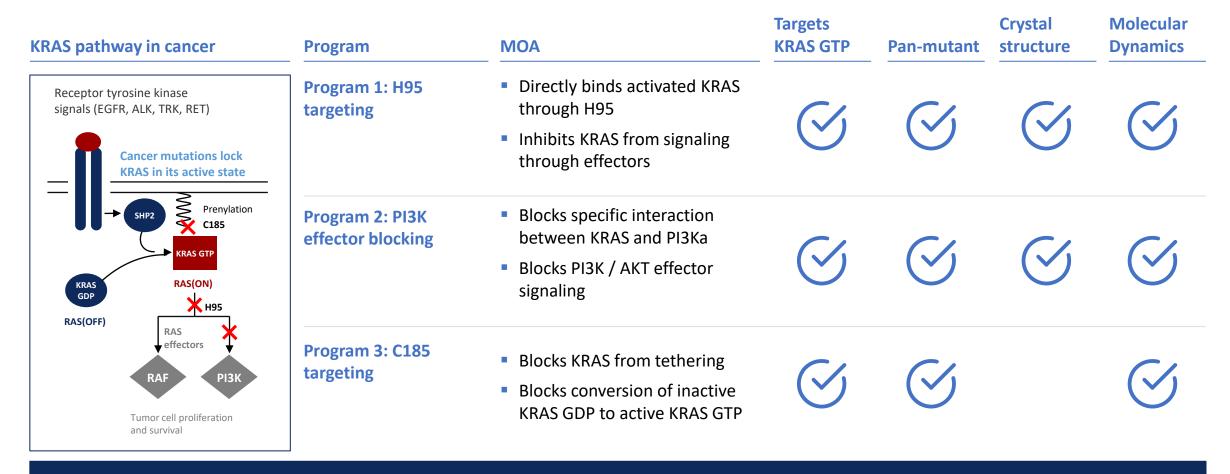
One therapeutic approach is to inhibit KRAS4b membrane localization by targeting hypervariable region

Static model reveals only a subset of potential binding sites for pharmacological compounds

... whereas molecular dynamics simulation reveals transient conformations and interactions

KRAS4b simulation

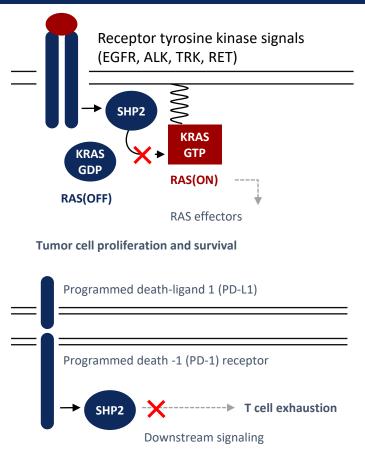
G-domain G-domain switch I


G-domain switch II Hypervariable region

Reveals possible KRAS4b HVR transient localization to G-domain

Elucidates potential transient druggable pocket where compounds could react covalently with C185

Enables in silico SAR to inhibit **KRAS4b** membrane localization


KRAS: multiple shots on goal with our pan-mutant inhibitor programs — each with a unique MOA targeting a novel pocket

Our programs are designed to address all KRAS driver mutations, which occur in >30% of all cancers

SHP2: Our compound shows best-in-class potential

Our SHP2i blocks downstream MAPK signaling and abrogates T cell exhaustion

We believe BBP-398 has the ideal properties for combination with a multitude of other therapeutic classes

Human half life: ~15 hours1 Potentially differentiated safety profile for Allows for recovery above EC50 and reduced combination therapy MAPK-driven tox hERG IC50 (μM)*: >100: No QT prolongation

SHP2i combination potential US + EU incidence, '000s

Supporting evidence² Peclin data:

~1 million patients annually

SHP2: BBP-398 monotherapy study initiated in 2020; combo trials to follow

Mono therapy

- Monotherapy study initiated 2H 2020
- Dose escalation followed by dose expansion
- Starting dose 80mg

Combo Therapy

- Partnered with Perceptive-backed LianBio in China for initial combo therapy trials
- Dose escalation followed by dose expansion
- Priority combinations include osimertinib, and G12Ci in NSCLC

Initial clinical combinations of focus based on SHP2i preclinical data

	SHP2i Combination Partner	Tumor growth inhibition
KRAS G12Ci	AMG 510	~130%
EGFRi	Osimertinib	~125%
PD-1	Anti-mouse PD-1	~90%
MEK	Trametinib	~80%
CDK4/6 and MEK	Trametinib + palbociclib	~110%

2021 is a pivotal year with major catalysts across the pipeline

ANTICIPATED 2021 2022 **1H 2H** FY BBIO / EIDX merger closure: Acoramidis (ATTR stabilizer) for Acoramidis (ATTR stabilizer) for ATTR-Shareholder meeting January 19 **ATTR-CM:** Ph3 ATTRibute topline data **CM:** NDA submission Low-dose infigratinib (FGFRi) for KRAS inhibitor program: Clinical NULIBRY (fosdenopterin) for MoCD achondroplasia: Ph2 proof-ofcandidate selection type A: FDA approval concept data SHP2 inhibitor for RAS and RTK driven Encaleret (CaSRi) for ADH1: Ph2 AAV5 gene therapy for CAH: Initial cancer: Monotherapy Phase 2 dose proof-of-concept data data from first-in-human study (late selection '21 / early '22) High-dose infigratinib (FGFRi) for Ribitol for LGMD2i: Ph2 proof-ofsecond-line cholangiocarcinoma: concept data **COL7 replacement for RDEB:** Data FDA approval from Ph2 study (late '21 / early '22)

\$1bn+ in cash and equivalents as of March 2021 anticipated to provide runway into 2023